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This package implements an active learning approach to efficiently and confidently identify the Pareto front with any
regression model that can output a mean and a standard deviation.

It works with any number of objectives, missing data, and is highly customizable.

If you find this code useful for your work, please cite:

• Jablonka, K. M.; Giriprasad, M. J.; Wang, S.; Smit, B.; Yoo, B. Bias Free Multiobjective Active Learning for
Materials Design and Discovery, ChemRxiv 2020 (10.26434/chemrxiv.13200197.v1).

• Zuluaga, M.; Krause, A.; Püschel, M. E-PAL: An Active Learning Approach to the Multi-Objective Optimiza-
tion Problem. Journal of Machine Learning Research 2016, 17 (104), 1–32.
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1.1 Getting Started

1.1.1 Installation

We recommend installing PyePAL in a dedicated virtual environment or conda environment.

To install the latest stable release use

pip install pyepal

The latest version of PyePAL can be installed from GitHub using

pip install git+https://github.com/kjappelbaum/pyepal.git

1.1.2 Which class do i use?

• For Gaussian processes built with sklearn use PALSklearn

• For Gaussian processes built with GPy use PALGPy

• For coregionalized Gaussian processes (built with GPy) use PALCoregionalized

• For quantile regression using LightGBM gradient boosted decision trees use PALGBDT

• For infinite wide neural networks with the neural tangent kernel or exact Bayesian inference (Novak et al., 2019)
use PALNT

• For an ensemble of finite width neural networks (Lakshminarayanan et al., 2017) (built with JAX) use
PALNTEnsemble

If your favorite model is not listed, you can easily implement it yourself (see Implementing a new PAL class)!

1.1.3 Running an active learning experiment

The examples directory contains a Jupyter notebook with an example that can also be run on MyBinder.

If using a Gaussian process model built with sklearn or GPy we recommend using a pre-built class such as
PALSklearn, PALCoregionalized, PALGPy and following the subsequent steps (for more details on which
class to use see Which class do i use?):

1. For each objective create a model (if using a coregionalized Gaussian process model, only one model needs to
be created)

3

https://docs.python.org/3/tutorial/venv.html
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2. Sample a few initial points from the design space. We provide the get_maxmin_samples() or
get_kmeans_samples() utilities that can help with the sampling. Our code assumes that X is a np.
array.

from pyepal import get_kmeans_samples, get_maxmin_samples

# This selects the 10 points closest to the centroids of a k=10 means
→˓clustering
indices = get_kmeans_samples(X, 10)

# This selects the 10 farthest points in feature space
indices = get_maxmin_samples(X, 10)

3. Now we can initialize the instance of one PAL class. If using a sklearn Gaussian process model, we would
use

from pyepal import PALSklearn

# Each of these models is an instance of sklearn.gaussian_process.
→˓GaussianProcessRegressor
models = [gpr0, gpr1, gpr2]

# We always need to provide the feature matrix (X), a list of models, and
→˓the number of objectives
palinstance = PALSklearn(X, models, 3)

# Now, we can also feed in the first measurements
# this here assumes that we have all measurements for y and we now
# provide those which are present in the indices array
palinstance.update_train_set(indices, y[indices])

# Now we can run one step
next_idx = palinstance.run_one_step()

At this level, we have a range of different optional arguements we can set.

• epsilon: one 𝜖 per dimension in a np.ndarray. This can be used to set different tolerances
for each objective. Note that 𝜖𝑖 ∈ [0, 1].

• delta: the 𝛿 hyperparameter (𝛿 ∈ [0, 1]). Increasing this value will speed up the convergence.

• beta_scale: an empirical scaling parameter for 𝛽. The theoretical guarantees in the PAL
paper are derived for this parameter set to 1. But in practice, a much faster convergence can be
achieved by setting it to a number 0 < 𝛽scale ≪ 1.

• goal: By default, PyePAL assumes that the goal is to maximize every objective. If this is not
the case, this argument can be set using a list of “min” and “max” strings, with “min” specifying
whether to minimize the ith objective and “max” indicating whether to maximize this objective.

• coef_var_threshold: By default, PyePAL will not consider points with a coefficient of
variation ≥ 3 for the classification step of the algorithm. This is meant to avoid classifying
design points for which the model is entirely unsure. This tends to happen when a model is
severely overfit on the training data (i.e., the training data uncertainties are very low, whereas
the prediction uncertainties are very high). To change this setting, reduce this value to make the
check tighter or increase it to avoid this check (as in the original implementation).

In the case of missing observations, i.e., only two of three outputs are measured, report the missing observations as
np.nan. The call could look like

4 Chapter 1. Contents
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import numpy as np

palinstance.update_train_set(np.array([1,2]), np.array([[1, 2, 3], [np.nan, 1, 2,
→˓0]]))

for a case in which we performed measurements for samples with index 1 and 2 of our design space, but did not
measure the first target for sample 2.

Hyperparameter optimization

Usually, the hyperparameters of a machine learning model, in particular the kernel hyperparameters of a Gaus-
sian process regression model, should be optimized as new training data is added. However, since this is
usually a computationally expensive process, it may not be desirable to perform this at every iteration of the
active learning process. The iteration frequency of the hyperparameter optimization is internally set by the
_should_optimize_hyperparameters function, which by default uses a schedule that optimizes the hy-
perparameter every 10th iteration. This behavior can be changed by override this function.

Logging

Basic information such as the current iteration and the classification status are logged and can be viewed by printing
the PAL object

print(palinstance)

# returns: pyepal at iteration 1. 10 Pareto optimal points, 1304 discarded points,
→˓200 unclassified points.

We also provide calculation of the hypervolume enclosed by the Pareto front with the function
get_hypervolume()

hv = get_hypervolume(palinstance.means[palinstance.pareto_optimal])

Properties of the PAL object

For debugging there are some properties and attributes of the PAL class that can be used to inspect the progress of the
active learning loop.

• get the points in the design space, x:

– design_space returns the full design space matrix

– pareto_optimal_points: returns the points that are classified as Pareto-efficient

– sampled_points: returns the points that have been sampled

– discarded_points: returns the points that have been discarded

• get the indices of Pareto efficent, sampled, discarded, and unclassified points with
pareto_optimal_indices, sampled_indices, discarded_indices, and
unclassified_indices

• similarly, the number of points in the different classes can be obtained us-
ing number_pareto_optimal_points, number_discarded_points,
number_unclassified_points, and number_sampled_points. The total number of design
points can be obtained with number_design_points.

1.1. Getting Started 5
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• hyperrectangle_size returns the sizes of the hyperrectangles, i.e., the weights that are used in the sam-
pling step

• means and std contain the predictions of the model

• sampled is a mask array. In case one objective has not been measured its cell is False

Exploring a space where all objectives are known

In some cases, we may already posess all measurements, but would like to run PAL with different settings to test how
the algorithm performs. In this case, we provide the exhaust_loop() wrapper.

from pyepal import PALSklearn, exhaust_loop
models = [gpr0, gpr1, gpr2]
palinstance = PALSklearn(X, models, 3)

exhaust_loop(palinstance, y)

This will continue calling run_one_step() until there is no unclassified sample left.

Batch sampling

By default, the run_one_step function of the PAL classes will return a np.ndarray with only one index for
the point in the design space for which the next experiment should be performed. In some situations, it may be more
practical to run multiple experiments as batches before running the next active learning iteration. In such cases, we
provide the batch_size argument which can be set to an integer greater than one.

next_idx = palinstance.run_one_step(batch_size=10)
# next_idx will be a np.array of length 10

Note that the exhaust_loop also supports the batch_size keyword argument

palinstance = PALSklearn(X, models, 3)

# sample always 10 points and do this until there is no unclassified
# point left
exhaust_loop(palinstance, y, batch_size=10)

Adding new points to the design matrix

In some applications, you might want to augment the design matrix after a few iterations of PyePAL. This could
be useful, for example, if you start with a coarse discretization of your design space then want to refine this grid in
subsequent iterations in the relevant regions of the design space.

Adding new points to the design matrix can be easily achieved using the augment_design_matrix() function
that takes the new design matrix as input. By default, it will run the current model for the new, augmented, design
matrix, and re-classify all points. You can turn this behavior off using the clean_classify parameter.

Alternatively, you can use the classify flag that keeps all previous classifications. This means that if there is a
point that was previously Pareto-efficient in the non-augmented design space but is now dominated by a new design
point, it will no longer certainly be classified as Pareto-efficient.

Note that is important that the new points are sampled from the same distribution as the previous points in the design
space. Otherwise, the model will have to deal with unexpected data shift.

6 Chapter 1. Contents
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1.1.4 Caveats and tricks with Gaussian processes

One caveat to keep in mind is that 𝜖-PAL will not work if the predictive variance does not make sense, for example,
when the model is overconfident and the uncertainties for the training set is significantly lower than those for the
predicted set. In this case, PyePAL will untimely, and often incorrectly, label the design points. An example situation
where the predictions for an overconfident model due to a training set that excludes a part of design space is shown in
the figure below

This problem is exacerbated in conjunction with 𝛽scale < 1. To make the model more robust we suggest trying:

• to set reasonable bounds on the length scale parameters

• to increase the regularization parameter/noise kernel (alpha in sklearn)

• to increase the number of data points, especially the coverage of the design space

• to use a kernel that suits the problem

• to turn off ARD. Automatic relevance determination (ARD) might increase the predictive performance, but also
makes the model more prone to overfitting

We also recommend cross-validating the Gaussian process models and checking that the predicted variances make
sense. When performing cross-validation, make sure that the index provided to PyePAL is the same size as the cross-
validation folds. By default, the code will run a simple cross-validation only on the first iteration and provide a warning
if the mean absolute error is above the mean standard deviation. The warning will look something like

The mean absolute error in cross-validation is 64.29, the mean variance is 0.36.
Your model might not be predictive and/or overconfident.
In the docs, you find hints on how to make GPRs more robust.

This behavior can changed with the cross-validation test being performed more frequently by overriding the
should_run_crossvalidation function.

1.1. Getting Started 7
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Another way to detect overfitting is to use plot_jointplot() function from the plotting subpackage. This func-
tion will plot all objectives against each other (with errorbars and different classes indicated with colors) and his-
tograms of the objectives on the diagonal. If the majority of predicted points tend to overlap one another and get
discarded by PyePAL, this may suggest that the surrogate model is overfitted.

from pyepal.plotting import plot_jointplot

# palinstance is a instance of a PAL class after
# calling run_one_step
fig = plot_jointplot(palinstance.means, palinstance)

1.2 Background

This package implements a modified version of the -PAL algorithm from Zuluaga et al. in an object-oriented design.
The algorithm effeciently searches for the Pareto efficient points in an unbiased manner for any number of dimensions.
This package can be used with any regression model that can output means and standard deviations.

This implementation has the following features:

• We ensure that the sampling is scale-invariant and that the algorithm can deal with positive and negative objective
values.

• Instead of using the predicted �̂� and �̂� also for the sampled points we use the measured 𝜇 and 𝜎.

• This implementation is directly scalable to 𝑛-dimensional problems.

8 Chapter 1. Contents

https://jmlr.org/papers/v17/15-047.html


pyepal, Release v0.4.2

• It can be easily used with any kind of regression model with uncertainty measures. For example, one can replace
the Gaussian process model with a neural network with Dropout Monte Carlo for the uncertainty estimate.

• The support for missing data is implemented. For example, if you measure for labeled data for only some of the
objectives, you will simply need to provide np.nan for the missing measurements. The code will automatically
estimate these measurements. If using coregionalized GPR models, the models will try to utilize the correlations
between the objectives to improve these predictions.

In our own work, we used this algorithm for materials discovery applications.

1.2.1 The intuition behind the algorithm

The PAL algorithm iterates through the following steps:

a. Training a machine learning model to predict means and standard deviations for all points of the design space.
This can be used to construct uncertainty hyperrectangles.

b. Using these points, we can use the Pareto dominance relation to classify points as Pareto optimal or to discard
them. In some cases, e.g., when uncertainty hyperrectangles overlap, we will not be able to perform a classifica-
tion with confidence. This is different from many Bayesian optimization approaches that couples an acquisition
function such as expected improvement, which introduces a total order in the design space and hence biases the
search.

c. Since in step (b) we discard many points (with confidence) the effective design space shrinks. This enables us to
sample the next experiment from the regions near the Pareto front with points labeled as Pareto optimal and “un-
classified”. Since the ultimate goal is to perform a classification of the full design space—with confidence—we
sample the point with the largest hyperrectangle.

d. Retraining a model with this new measurement will reduce the width of the hyperrectangles.

1.2. Background 9
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1.2.2 How do the hyperparameters influence the algorithm?

To test the influence of hyperparameter settings we provide an example where we ran one step of the algorithm on the
Binh-Korn test function.

We model every objective seperately with a Matérn-3/2 kernel, leave 𝛿 = 0.05 fixed and vary 𝜖 and 𝛽scale.

We find that increasing 𝜖 speeds up the algorithm, but gives us a sparser Pareto frontier. Similarly, 𝛽scale speeds up the
algorithm by scaling the size of the hyperrectangles.

As shown in the figure below, 𝛽 depends on 𝛿 and scaling beta down will drastically reduce the size of the uncertainty
rectangles and in this way influence the convergence behavior.

10 Chapter 1. Contents
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1.3 Tutorials

To explore different use cases of PyePAL, we recommend checking out the example notebooks. All notebooks can be
run without installation on MyBinder. In the folder you find the notebooks with pre-executed output cells. Rerunning
them should take no more than a few minutes.

1.3.1 1. One active learning step using GPR models built with GPy

1.3. Tutorials 11
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Topic covered

• building a pal_coregionalized GPR model using build_coregionalized_model()

• using coregionalized models with PALCoregionalized

• attributes of the PAL instance

• exhaust_loop()

1.3.2 2. Active learning with “measure” function and sklearn models

Topic covered

• using sklearn models with PALSklearn

• selecting an initial set with get_maxmin_samples()

• plotting with plot_jointplot()

12 Chapter 1. Contents

https://mybinder.org/v2/gh/kjappelbaum/pyepal/HEAD?filepath=examples/active_learning_example.ipynb


pyepal, Release v0.4.2

1.3.3 3. Quantile regression

• Using LightGBM models with quantile loss with PALGBDT

• selecting an initial set with get_kmeans_samples()

1.4 The PyePAL API reference

1.4.1 The PAL package

Core functions

Core functions for PAL

Base class

Base class for PAL

class pyepal.pal.pal_base.PALBase(X_design, models, ndim, epsilon=0.01, delta=0.05,
beta_scale=0.1111111111111111, goals=None,
coef_var_threshold=3)

Bases: object

PAL base class

__init__(X_design, models, ndim, epsilon=0.01, delta=0.05, beta_scale=0.1111111111111111,
goals=None, coef_var_threshold=3)

Initialize the PAL instance

Parameters

• X_design (np.array) – Design space (feature matrix)

• models (list) – Machine learning models

• ndim (int) – Number of objectives

• epsilon (Union[list, float], optional) – Epsilon hyperparameter. De-
faults to 0.01.

1.4. The PyePAL API reference 13
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• delta (float, optional) – Delta hyperparameter. Defaults to 0.05.

• beta_scale (float, optional) – Scaling parameter for beta. If not equal to 1, the
theoretical guarantees do not necessarily hold. Also note that the parametrization depends
on the kernel type. Defaults to 1/9.

• goals (List[str], optional) – If a list, provide “min” for every objective that
shall be minimized and “max” for every objective that shall be maximized. Defaults to
None, which means that the code maximizes all objectives.

• coef_var_threshold (float, optional) – Use only points with a coefficient
of variation below this threshold in the classification step. Defaults to 3.

__repr__()
Return repr(self).

__weakref__
list of weak references to the object (if defined)

augment_design_space(X_design, classify=False, clean_classify=True)
Add new design points to PAL instance

Parameters

• X_design (np.ndarrary) – Design matrix. Two-dimensional array containing mea-
surements in the rows and the features as the columns.

• classify (bool) – Reclassifies the new design space, using the old model. This is,
it runs inference, calculates the hyperrectangles, and runs the classification. Does not
increase the iteration count. Note though that points that already have been classified as
Pareto-optimal will not be re-classified, e.g., discarded—even if the new design points
dominate the existing “Pareto optimal” points. Defaults to False.

• clean_classify (bool) – Reclassifies the new design space, using the old model.
This is, it runs inference, calculates the hyperrectangles, and runs the classification. Does
not increase the iteration count. But, in contrast to classify it erases all previous classi-
fications, before running the new classification. Hence, if some new design point domi-
nates a previously Pareto efficient point, the previous Pareto optimal point will no longer
be classified as Pareto efficient. This flag is incompatible with classify. If you choose
clean_classify, PyePAL will erase all previous classifications, independent of what you
choose for classify. Defaults to True.

Return type None

property discarded_indices
Return the indices of the discarded points

property discarded_points
Return the discarded points

property hyperrectangle_sizes
Return the sizes of the hyperrectangles

property number_design_points
Return the number of points in the design space

property number_discarded_points
Return the nnumber of discarded points

property number_pareto_optimal_points
Return the number of Pareto optimal points

14 Chapter 1. Contents
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property number_sampled_points
Return the number of sampled points

property number_unclassified_points
Return the number of unclassified points

property pareto_optimal_indices
Return the indices of the Pareto optimal points

property pareto_optimal_points
Return the pareto optimal points

run_one_step(batch_size=1)
[summary]

Parameters batch_size (int, optional) – Number of indices that will be returned. De-
faults to 1.

Raises ValueError – In case the PAL instance was not initialized with measurements.

Returns

Returns array of indices if there are unclassified points that can be sample left.

Return type Union[np.array, None]

sample(exclude_idx=None)
Runs the sampling step based on the size of the hyperrectangle. I.e., favoring exploration.

Parameters exclude_idx (Union[np.array, None], optional) – Points in de-
sign space to exclude from sampling. Defaults to None.

Raises ValueError – In case there are no uncertainty rectangles, i.e., when the _predict has
not been successfully called.

Returns Index of next point to evaluate in design space

Return type int

property sampled_indices
Return the indices of the sampled points

property sampled_mask
Create a mask for the sampled points We count a point as sampled if at least one objective has been
measured, i.e., self.sampled is a N * number objectives array in which some columns can be false if a
measurement has not been performed

property sampled_points
Return the sampled points

should_cross_validate()
Override for more complex cross validation schedules

property unclassified_indices
Return the indices of the unclassified points

property unclassified_points
Return the discarded points

update_train_set(indices, measurements, measurement_uncertainty=None)
Update training set following a measurement

Parameters

1.4. The PyePAL API reference 15
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• indices (np.ndarray) – Indices of design space at which the measurements were
taken

• measurements (np.ndarray) – Measured values, 2D array. the length must equal
the length of the indices array. the second direction must equal the number of objectives.
If an objective is missing, provide np.nan. For example, np.array([1, 1, np.nan])

• measurement_uncertainty (np.ndarray) – uncertainty in the measuremens, if
not provided (None) will be zero. If it is not None, it must be an array with the same shape
as the measurements If an objective is missing, provide np.nan. For example, np.array([1,
1, np.nan])

For GPy models

PAL using GPy GPR models

class pyepal.pal.pal_gpy.PALGPy(*args, **kwargs)
Bases: pyepal.pal.pal_base.PALBase

PAL class for a list of GPy GPR models, with one model per objective

__init__(*args, **kwargs)
Contruct the PALGPy instance

Parameters

• X_design (np.array) – Design space (feature matrix)

• models (list) – Machine learning models

• ndim (int) – Number of objectives

• epsilon (Union[list, float], optional) – Epsilon hyperparameter. De-
faults to 0.01.

• delta (float, optional) – Delta hyperparameter. Defaults to 0.05.

• beta_scale (float, optional) – Scaling parameter for beta. If not equal to 1, the
theoretical guarantees do not necessarily hold. Also note that the parametrization depends
on the kernel type. Defaults to 1/9.

• goals (List[str], optional) – If a list, provide “min” for every objective that
shall be minimized and “max” for every objective that shall be maximized. Defaults to
None, which means that the code maximizes all objectives.

• coef_var_threshold (float, optional) – Use only points with a coefficient
of variation below this threshold in the classification step. Defaults to 3.

• restarts (int) – Number of random restarts that are used for hyperparameter opti-
mization. Defaults to 20.

• n_jobs (int) – Number of parallel processes that are used to fit the GPR models. De-
faults to 1.

16 Chapter 1. Contents
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For coregionalized GPy models

PAL for coregionalized GPR models

class pyepal.pal.pal_coregionalized.PALCoregionalized(*args, **kwargs)
Bases: pyepal.pal.pal_base.PALBase

PAL class for a coregionalized GPR model

__init__(*args, **kwargs)
Construct the PALCoregionalized instance

Parameters

• X_design (np.array) – Design space (feature matrix)

• models (list) – Machine learning models

• ndim (int) – Number of objectives

• epsilon (Union[list, float], optional) – Epsilon hyperparameter. De-
faults to 0.01.

• delta (float, optional) – Delta hyperparameter. Defaults to 0.05.

• beta_scale (float, optional) – Scaling parameter for beta. If not equal to 1, the
theoretical guarantees do not necessarily hold. Also note that the parametrization depends
on the kernel type. Defaults to 1/9.

• goals (List[str], optional) – If a list, provide “min” for every objective that
shall be minimized and “max” for every objective that shall be maximized. Defaults to
None, which means that the code maximizes all objectives.

• coef_var_threshold (float, optional) – Use only points with a coefficient
of variation below this threshold in the classification step. Defaults to 3.

• restarts (int) – Number of random restarts that are used for hyperparameter opti-
mization. Defaults to 20.

• parallel (bool) – If true, model hyperparameters are optimized in parallel, using the
GPy implementation. Defaults to False.

For sklearn GPR models

PAL using Sklearn GPR models

class pyepal.pal.pal_sklearn.PALSklearn(*args, **kwargs)
Bases: pyepal.pal.pal_base.PALBase

PAL class for a list of Sklearn (GPR) models, with one model per objective

__init__(*args, **kwargs)
Construct the PALSklearn instance

Parameters

• X_design (np.array) – Design space (feature matrix)

• models (list) – Machine learning models. You can provide a list of GaussianProcess-
Regressor instances or a list of fitted RandomizedSearchCV/GridSearchCV instances with
GaussianProcessRegressor models

• ndim (int) – Number of objectives
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• epsilon (Union[list, float], optional) – Epsilon hyperparameter. De-
faults to 0.01.

• delta (float, optional) – Delta hyperparameter. Defaults to 0.05.

• beta_scale (float, optional) – Scaling parameter for beta. If not equal to 1, the
theoretical guarantees do not necessarily hold. Also note that the parametrization depends
on the kernel type. Defaults to 1/9.

• goals (List[str], optional) – If a list, provide “min” for every objective that
shall be minimized and “max” for every objective that shall be maximized. Defaults to
None, which means that the code maximizes all objectives.

• coef_var_threshold (float, optional) – Use only points with a coefficient
of variation below this threshold in the classification step. Defaults to 3.

• n_jobs (int) – Number of parallel processes that are used to fit the GPR models. De-
faults to 1.

For quantile regression with LightGBM

Implements a PAL class for GBDT models which can predict uncertainity intervals when used with quantile loss. For
an example of GBDT with quantile loss see Jablonka, Kevin Maik; Moosavi, Seyed Mohamad; Asgari, Mehrdad;
Ireland, Christopher; Patiny, Luc; Smit, Berend (2020): A Data-Driven Perspective on the Colours of Metal-Organic
Frameworks. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13033217.v1

For general information about quantile regression see https://en.wikipedia.org/wiki/Quantile_regression

Note that the scaling of the hyperrectangles has been derived for GPR models (with RBF kernels).

class pyepal.pal.pal_gbdt.PALGBDT(*args, **kwargs)
Bases: pyepal.pal.pal_base.PALBase

PAL class for a list of LightGBM GBDT models

__init__(*args, **kwargs)
Construct the PALGBDT instance

Parameters

• X_design (np.array) – Design space (feature matrix)

• (List[Iterable[LGBMRegressor (models) – Machine learning models. You
need to provide a list of iterables. One iterable per objective and every iterable contains
three LGBMRegressors. The first one for the lower uncertainty limits, the middle one for
the median and the last one for the upper limit. To create appropriate models, you need to
use the quantile loss. If you want to parallelize training, we recommend that you use the
LightGBM parallelization and fit the models for the different objectives in serial fashion.s

• LGBMRegressor – Machine learning models. You need to provide a list of iterables.
One iterable per objective and every iterable contains three LGBMRegressors. The first
one for the lower uncertainty limits, the middle one for the median and the last one for the
upper limit. To create appropriate models, you need to use the quantile loss. If you want
to parallelize training, we recommend that you use the LightGBM parallelization and fit
the models for the different objectives in serial fashion.s

• LGBMRegressor]] – Machine learning models. You need to provide a list of iterables.
One iterable per objective and every iterable contains three LGBMRegressors. The first
one for the lower uncertainty limits, the middle one for the median and the last one for the
upper limit. To create appropriate models, you need to use the quantile loss. If you want
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to parallelize training, we recommend that you use the LightGBM parallelization and fit
the models for the different objectives in serial fashion.s

• ndim (int) – Number of objectives

• epsilon (Union[list, float], optional) – Epsilon hyperparameter. De-
faults to 0.01.

• delta (float, optional) – Delta hyperparameter. Defaults to 0.05.

• beta_scale (float, optional) – Scaling parameter for beta. If not equal to 1, the
theoretical guarantees do not necessarily hold. Also note that the parametrization depends
on the kernel type. Defaults to 1/9.

• goals (List[str], optional) – If a list, provide “min” for every objective that
shall be minimized and “max” for every objective that shall be maximized. Defaults to
None, which means that the code maximizes all objectives.

• coef_var_threshold (float, optional) – Use only points with a coefficient
of variation below this threshold in the classification step. Defaults to 3.

• interquartile_scaler (float, optional) – Used to convert the difference
between the upper and lower quantile into a standard deviation. This, is std = (up-
low)/interquartile_scaler. Defaults to 1.35, following Wan, X., Wang, W., Liu, J. et
al. Estimating the sample mean and standard deviation from the sample size, median,
range and/or interquartile range. BMC Med Res Methodol 14, 135 (2014). https:
//doi.org/10.1186/1471-2288-14-135

Schedules for hyperparameter optimization

Provides some scheduling functions that can be used to implement the _should_optimize_hyperparameters function

pyepal.pal.schedules.exp_decay(iteration, base=10)
Optimize hyperparameters at logartihmically spaced intervals

Parameters

• iteration (int) – current iteration

• base (int, optional) – Base of the logarithm. Defaults to 10.

Returns True if iteration is on the log scaled grid

Return type bool

pyepal.pal.schedules.linear(iteration, frequency=10)
Optimize hyperparameters at equally spaced intervals

Parameters

• iteration (int) – current iteration

• frequency (int, optional) – Spacing between the True outputs. Defaults to 10.

Returns True if iteration can be divided by frequency without remainder

Return type bool
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Utilities for multiobjective optimization

Utilities for dealing with Pareto fronts in general

pyepal.pal.utils.dominance_check(point1, point2)
One point dominates another if it is not worse in all objectives and strictly better in at least one. This here
assumes we want to maximize

Return type bool

pyepal.pal.utils.dominance_check_jitted(point, array)
Check if point dominates any point in array

Return type bool

pyepal.pal.utils.dominance_check_jitted_2(array, point)
Check if any point in array dominates point

Return type bool

pyepal.pal.utils.dominance_check_jitted_3(array, point, ignore_me)
Check if any point in array dominates point. ignore_me since numba does not understand masked arrays

Return type bool

pyepal.pal.utils.exhaust_loop(palinstance, y, batch_size=1)
Helper function that takes an initialized PAL instance and loops the sampling until there is no unclassified point
left. This is useful if all measurements are already taken and one wants to test the algorithm with different
hyperparameters.

Parameters

• palinstance (PALBase) – A initialized instance of a class that inherited from PALBase
and implemented the ._train() and ._predict() functions

• y (np.array) – Measurements. The number of measurements must equal the number of
points in the design space.

• batch_size (int, optional) – Number of indices that will be returned. Defaults to
10.

Returns None. The PAL instance is updated in place

pyepal.pal.utils.get_hypervolume(pareto_front, reference_vector, prefactor=- 1)
Compute the hypervolume indicator of a Pareto front I multiply it with minus one as we assume that we want to
maximize all objective and then we calculate the area

f1 | |----| | -| | -| ———— f2

But the code we use for the hv indicator assumes that the reference vector is larger than all the points in the
Pareto front. For this reason, we then flip all the signs using prefactor

This indicator is not needed for the epsilon-PAL algorithm itself but only to allow tracking a metric that might
help the user to see if the algorithm converges.

Return type float

pyepal.pal.utils.get_kmeans_samples(X, n_samples, **kwargs)
Get the samples that are closest to the k=n_samples centroids

Parameters

• X (np.array) – Feature array, on which the KMeans clustering is run

• n_samples (int) – number of samples are should be selected
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• passed to the KMeans (**kwargs) –

Returns selected_indices

Return type np.array

pyepal.pal.utils.get_maxmin_samples(X, n_samples, metric='euclidean', init='mean',
seed=None, **kwargs)

Greedy maxmin sampling, also known as Kennard-Stone sampling (1). Note that a greedy sampling is not
guaranteed to give the ideal solution and the output will depend on the random initialization (if this is chosen).

If you need a good solution, you can restart this algorithm multiple times with random initialization and different
random seeds and use a coverage metric to quantify how well the space is covered. Some metrics are described
in (2). In contrast to the code provided with (2) and (3) we do not consider the feature importance for the
selection as this is typically not known beforehand.

You might want to standardize your data before applying this sampling function.

Some more sampling options are provided in our structure_comp (4) Python package. Also, this implementation
here is quite memory hungry.

References: (1) Kennard, R. W.; Stone, L. A. Computer Aided Design of Experiments. Technometrics 1969,
11 (1), 137–148. https://doi.org/10.1080/00401706.1969.10490666. (2) Moosavi, S. M.; Nandy, A.; Jablonka,
K. M.; Ongari, D.; Janet, J. P.; Boyd, P. G.; Lee, Y.; Smit, B.; Kulik, H. J. Understanding the Diversity of the
Metal-Organic Framework Ecosystem. Nature Communications 2020, 11 (1), 4068. https://doi.org/10.1038/
s41467-020-17755-8. (3) Moosavi, S. M.; Chidambaram, A.; Talirz, L.; Haranczyk, M.; Stylianou, K. C.; Smit,
B. Capturing Chemical Intuition in Synthesis of Metal-Organic Frameworks. Nat Commun 2019, 10 (1), 539.
https://doi.org/10.1038/s41467-019-08483-9. (4) https://github.com/kjappelbaum/structure_comp

Parameters

• X (np.array) – Feature array, this is the array that is used to perform the sampling

• n_samples (int) – number of points that will be selected, needs to be lower than the
length of X

• metric (str, optional) – Distance metric to use for the maxmin calculation. Must
be a valid option of scipy.spatial.distance.cdist (‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘city-
block’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’,
‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seu-
clidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’, ‘yule’). Defaults to
‘euclidean’

• init (str, optional) – either ‘mean’, ‘median’, or ‘random’. Determines how the
initial point is chosen. Defaults to ‘center’

• seed (int, optional) – seed for the random number generator. Defaults to None.

• passed to the cdist (**kwargs) –

Returns selected_indices

Return type np.array

pyepal.pal.utils.is_pareto_efficient(costs, return_mask=True)
Find the Pareto efficient points Based on https://stackoverflow.com/questions/ 32791911/fast-calculation-of-
pareto-front-in-python

Parameters

• costs (np.array) – An (n_points, n_costs) array

• return_mask (bool, optional) – True to return a mask, Otherwise it will be a
(n_efficient_points, ) integer array of indices. Defaults to True.
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Returns [description]

Return type np.array

Utilities for plotting

Plotting utilities

pyepal.plotting.plot_bar_iterations(pareto_optimal, non_pareto_points, unclassified_points,
ax=None)

Plot stacked barplots for every step of the iteration.

Parameters

• pareto_optimal (np.ndarray) – Number of pareto optimal points for every itera-
tion.

• non_pareto_points (np.ndarray) – Number of discarded points for every iteration

• unclassified_points (np.ndarray) – Number of unclassified points for every it-
eration

Returns ax

pyepal.plotting.plot_histogram(y, palinstance, ax=None)
Plot histograms, with maxima scaled to one and different categories indicated in color for one objective

Parameters

• y (np.ndarray) – objective (measurement)

• palinstance (PALBase) – instance of a PAL class

• ax (ax) – Matplotlib figure axis

Returns ax

pyepal.plotting.plot_jointplot(y, palinstance, labels=None, figsize=(8.0, 6.0))
Plot a jointplot of the objective space with histograms on the diagonal and 2D-Pareto plots on the off-diagonal.

Parameters

• y (np.array) – Two-dimensional array with the objectives (measurements)

• palinstance (PALBase) – “trained” PAL instance

• labels (Union[List[str], None], optional) – Labels for each objective. De-
faults to “objective [index]”.

• figsize (tuple, optional) – Figure size for joint plot. Defaults to (8.0, 6.0).

Returns fig

pyepal.plotting.plot_pareto_front_2d(y_0, y_1, std_0, std_1, palinstance, ax=None)
Plot a 2D pareto front, with the different categories indicated in color.

Parameters

• y_0 (np.ndarray) – objective 0

• y_1 (np.ndarray) – objective 1

• std_0 (np.ndarray) – standard deviation objective 0

• std_1 (np.ndarray) – standard deviation objective 0

• palinstance (PALBase) – PAL instance
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• ax (ax, optional) – Matplotlib figure axis. Defaults to None.

Returns ax

pyepal.plotting.plot_residuals(y, palinstance, labels=None, figsize=(6.0, 4.0))
Plot signed residual (on y axis) vs fitted (on x axis) plot of sampled points. Will create suplots for y.ndim > 1.

Parameters

• y (np.array) – Two-dimensional array with the objectives (measurements)

• palinstance (PALBase) – “trained” PAL instance

• labels (Union[List[str], None], optional) – Labels for each objective. De-
faults to “objective [index]”.

• figsize (tuple, optional) – Figure size for each individual residual vs fitted ob-
jective plot. Defaults to (6.0, 4.0).

Returns fig

Input validation

Methods to validate inputs for the PAL classes

pyepal.pal.validate_inputs.base_validate_models(models)
Currently no validation as the predict and train function are implemented independet of the base class

Return type list

pyepal.pal.validate_inputs.validate_beta_scale(beta_scale)

Parameters beta_scale (Any) – scaling factor for beta

Raises ValueError – If beta is smaller than 0

Returns scaling factor for beta

Return type float

pyepal.pal.validate_inputs.validate_coef_var(coef_var)
Make sure that the coef_var makes sense

pyepal.pal.validate_inputs.validate_coregionalized_gpy(models)
Make sure that model is a coregionalized GPR model

pyepal.pal.validate_inputs.validate_delta(delta)
Make sure that delta is in a reasonable range

Parameters delta (Any) – Delta hyperparameter

Raises ValueError – Delta must be in [0,1].

Returns delta

Return type float

pyepal.pal.validate_inputs.validate_epsilon(epsilon, ndim)
Validate epsilon and return a np.array

Parameters

• epsilon (Any) – Epsilon hyperparameter

• ndim (int) – Number of dimensions/objectives

Raises
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• ValueError – If epsilon is a list there must be one float per dimension

• ValueError – Epsilon must be in [0,1]

• ValueError – If epsilon is an array there must be one float per dimension

Returns Array of one epsilon per objective

Return type np.ndarray

pyepal.pal.validate_inputs.validate_gbdt_models(models, ndim)
Make sure that the number of iterables is equal to the number of objectives and that every iterable contains three
LGBMRegressors. Also, we check that at least the first and last models use quantile loss

Return type List[Iterable]

pyepal.pal.validate_inputs.validate_goals(goals, ndim)

Create a valid array of goals. 1 for maximization, -1 for objectives that are to be minimized.

Parameters

• goals (Any) – List of goals, typically provideded as strings ‘max’ for maximization and
‘min’ for minimization

• ndim (int) – number of dimensions

Raises

• ValueError – If goals is a list and the length is not equal to ndim

• ValueError – If goals is a list and the elements are not strings ‘min’, ‘max’ or -1 and 1

Returns Array of -1 and 1

Return type np.ndarray

pyepal.pal.validate_inputs.validate_gpy_model(models)
Make sure that all elements of the list a GPRegression models

pyepal.pal.validate_inputs.validate_interquartile_scaler(interquartile_scaler)
Make sure that the interquartile_scaler makes sense

Return type float

pyepal.pal.validate_inputs.validate_ndim(ndim)
Make sure that the number of dimensions makes sense

Parameters ndim (Any) – number of dimensions

Raises

• ValueError – If the number of dimensions is not an integer

• ValueError – If the number of dimensions is not greater than 0

Returns the number of dimensions

Return type int

pyepal.pal.validate_inputs.validate_njobs(njobs)
Make sure that njobs is an int > 1

Return type int

pyepal.pal.validate_inputs.validate_nt_models(models, ndim)
Make sure that we can work with a sequence of pyepal.pal.models.nt.NTModel()
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Return type Sequence

pyepal.pal.validate_inputs.validate_number_models(models, ndim)
Make sure that there are as many models as objectives

Parameters

• models (Any) – List of models

• ndim (int) – Number of objectives

Raises ValueError – If the number of models does not equal the number of objectives

pyepal.pal.validate_inputs.validate_optimizers(optimizers, ndim)
Make sure that we can work with a Sequence if JaxOptimizer

Return type Sequence

pyepal.pal.validate_inputs.validate_positive_integer_list(seq, ndim, parame-
ter_name='Parameter')

Can be used, e.g., to validate and standardize the ensemble size and epochs input

Return type Sequence[int]

pyepal.pal.validate_inputs.validate_sklearn_gpr_models(models, ndim)
Make sure that there is a list of GPR models, one model per objective

Return type List[GaussianProcessRegressor]

1.4.2 The models package

Helper functions for GPR with GPy

Wrappers for Gaussian Process Regression models.

We typically use the GPy package as it offers most flexibility for Gaussian processes in Python. Typically, we use
automatic relevance determination (ARD), where one lengthscale parameter per input dimension is used.

If your task requires training on larger training sets, you might consider replacing the models with their sparse version
but for the epsilon-PAL algorithm this typically shouldn’t be needed.

For kernel selection, you can have a look at https://www.cs.toronto.edu/~duvenaud/cookbook/ Matérn, RBF and Ra-
tionalQuadrat are good quick and dirty solutions but have their caveats

pyepal.models.gpr.build_coregionalized_model(X_train, y_train, kernel=None, **kwargs)
Wrapper for building a coregionalized GPR, it will have as many outputs as y_train.shape[1]. Each output will
have its own noise term

Return type GPCoregionalizedRegression

pyepal.models.gpr.build_model(X_train, y_train, index=0, kernel=None, **kwargs)
Build a single-output GPR model

Return type GPRegression

pyepal.models.gpr.get_matern_32_kernel(NFEAT, ARD=True, **kwargs)
Matern-3/2 kernel without ARD

Return type Matern32

pyepal.models.gpr.get_matern_52_kernel(NFEAT, ARD=True, **kwargs)
Matern-5/2 kernel without ARD

Return type Matern52

1.4. The PyePAL API reference 25

https://www.cs.toronto.edu/~duvenaud/cookbook/


pyepal, Release v0.4.2

pyepal.models.gpr.get_ratquad_kernel(NFEAT, ARD=True, **kwargs)
Rational quadratic kernel without ARD

Return type RatQuad

pyepal.models.gpr.predict(model, X)
Wrapper function for the prediction method of a GPy regression model. It return the standard deviation instead
of the variance

Return type Tuple[array, array]

pyepal.models.gpr.predict_coregionalized(model, X, index=0)
Wrapper function for the prediction method of a coregionalized GPy regression model. It return the standard
deviation instead of the variance

Return type Tuple[array, array]

pyepal.models.gpr.set_xy_coregionalized(model, X, y, mask=None)
Wrapper to update a coregionalized model with new data

1.5 Developer notes

1.5.1 Contribution Guidelines

Commit messages

• To automatically generate the changelog and releases we use conventional commits use the prefix feat for
new features, chore for updating grunt tasks etc; no production code change, fix for bug fixes and docs for
changes to the documentation. Use feat!:, or fix!:, refactor!:, etc., to represent a breaking change (indicated by
the !). This will result in bump of the SemVer major version number.

Python code

Please install the pre-commit hooks using

to automatically

• format the code with black

• sort the imports with isort

• lint the code with prospector

We use type hints, which we feel is a good way of documentation and helps us find bugs using mypy.

Some of the pre-commit hooks modify the files, e.g., they trim whitespaces or format the code. If they modify your
file, you will have to run git add and git commit again. To skip the pre-commit checks (not recommended) you
can use git commit --no-verify.
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New features

Please make a new branch for the development of new features. Rebase on the upstream master and include a test for
your new feature. (The CI checks for a drop in code coverage.)

Documentation

Currently, documentation is hosted on GitHub pages. Build it locally using make html in the doc directory and
then push it to GitHub pages using

git subtree push --prefix docs/_build/html origin gh-pages

1.5.2 Implementing a new PAL class

If you want to use PyePAL with a model that we do not support yet, i.e., not GPy or sklearn Gaus-
sian process regression, it is easy to write your own class. For this, you will need to inherit from
PALBase and implement your _train and _predict() functions (and maybe also the pyepal.
pal.pal_base.PALBase._set_hyperparameters and pyepal.pal.pal_base.PALBase.
_should_optimize_hyperparameters functions) using the design_space and y attributes of the
class.

For instance, if we develop some multioutput model that has a train() and a predict()method, we could simply
use the following design pattern

from pyepal import PALBase

class PALMyModel(PALBase):
def _train(self):

self.models[0].train(self.design_space[self.sampled], self.y[self.sampled])

def _predict(self):
self.mu, self.std = self.models[0].predict(self.design_space)

Note that we typically provide the models, even if it is only one, in a list to keep the API consistent.

In some instances, you may want to perform an operation in parallel, e.g., train the models for different objectives
in parallel. One convenient way to do this in Python is by using concurrent.futures. The only caveat to this that this
approach requires that the function is picklable. To ensure this, you may want to implement the function that you want
to parallelize, outside the class. For example, you could use the following design pattern

from pyepal import PALBase
import concurrent.futures
from functools import partial

def _train_model_picklable(i, models, design_space, objectives, sampled):
model = models[i]
model.fit(

design_space[sampled[:, i]],
objectives[sampled[:, i], i].reshape(-1, 1),

)
return model

class MyPal(PALBase):
def __init__(self, *args, **kwargs):

n_jobs = kwargs.pop("n_jobs", 1)

(continues on next page)
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(continued from previous page)

validate_njobs(n_jobs)
self.n_jobs = n_jobs
super().__init__(*args, **kwargs)

validate_number_models(self.models, self.ndim)

def _train(self):
train_single_partial = partial(

_train_model_picklable,
models=self.models,
design_space=self.design_space,
objectives=self.y,
sampled=self.sampled,

)
models = []
with concurrent.futures.ProcessPoolExecutor(

max_workers=self.n_jobs
) as executor:

for model in executor.map(train_single_partial, range(self.ndim)):
models.append(model)

self.models = models
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